Approximation of Haar Distributed Matrices and Limiting Distributions of Eigenvalues of Jacobi Ensembles

نویسنده

  • Tiefeng Jiang
چکیده

We develop a tool to approximate the entries of a large dimensional complex Jacobi ensemble with independent complex Gaussian random variables. Based on this and the author’s earlier work in this direction, we obtain the Tracy-Widom law of the largest singular values of the Jacobi emsemble. Moreover, the circular law, the Marchenko-Pastur law, the central limit theorem, and the laws of large numbers for the spectral norms are also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smallest eigenvalue distributions for two classes of β-Jacobi ensembles

We compute the exact and limiting smallest eigenvalue distributions for two classes of β-Jacobi ensembles not covered by previous studies. In the general β case, these distributions are given by multivariate hypergeometric 2F1 2/β functions, whose behavior can be analyzed asymptotically for special values of β which include β ∈ 2N+ as well as for β = 1. Interest in these objects stems from thei...

متن کامل

Smallest eigenvalue distributions for two classes of $\beta$-Jacobi ensembles

We compute the exact and limiting smallest eigenvalue distributions for a class of β-Jacobi ensembles not covered by previous studies. In the general β case, these distributions are given by multivariate hypergeometric 2F 2/β 1 functions, whose behavior can be analyzed asymptotically for special values of β which include β ∈ 2N+ as well as for β = 1. Interest in these objects stems from their c...

متن کامل

Limit theorems for beta-Jacobi ensembles

For a β-Jacobi ensemble determined by parameters a1, a2 and n, under the restriction that the three parameters go to infinity with n and a1 being of small orders of a2, we obtain some limit theorems about the eigenvalues. In particular, we derive the asymptotic distributions for the largest and the smallest eigenvalues, the central limit theorems of the eigenvalues, and the limiting distributio...

متن کامل

Distributions of the Extreme Eigenvaluesof Beta-Jacobi Random Matrices

We present explicit formulas for the distributions of the extreme eigenvalues of the β–Jacobi random matrix ensemble in terms of the hypergeometric function of a matrix argument. For β = 1, 2, 4, these formulas specialize to the well-known real, complex, and quaternion Jacobi ensembles, respectively.

متن کامل

Extreme Gaps between Eigenvalues of Random Matrices

This paper studies the extreme gaps between eigenvalues of random matrices. We give the joint limiting law of the smallest gaps for Haar-distributed unitary matrices and matrices from the Gaussian Unitary Ensemble. In particular, the kth smallest gap, normalized by a factor n, has a limiting density proportional to x3k−1e−x 3 . Concerning the largest gaps, normalized by n/ √ logn, they converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007